

Test Models in TEMA

Outline
● Model Semantics
● Models and Applications
● Handling Models

Model Semantics

Formalism
● Models are LSTS (labeled state transition

system) state machines
● Functionality encoded into actions (transition

labels)
● State labels used for auxiliary information

Parallel Composition
● Realistic systems are too large to model in a

single state machine
● We create several smaller model components

and combine them with parallel composition
● In parallel composition some actions of

individual model components executed
synchronously

● Rule-based composition: synchronizations
defined explicitly

Model Architecture
● Single model component active at a time,

others sleeping
● Active component can

● Execute actions on SUT (system under test)
● Query/alter the state of other components
● Activate another component and go to sleep

● Models created in two tiers: action machines
and refinement machines

Action Machines
● Describe the abstract

functionality of the
SUT

● Can be used across
different products

Refinement Machines
● Describe the

implementation of the
functionality on UI

● Specific to UI and
product

Generated Components
● Task switcher: manages control switches within

a single target (phone)
● Target switcher: manages control switches

between targets
● Synchronizer: used to form connections

between specific targets

Data
● Localization tables used to store simple

product-specific information
● Data tables used to store structured information
● Data in data tables accessed through data

statements, which can execute Python code

Models and Applications

Model Components in Applications
● Applications divided into smaller model

components to simplify modeling
● Separate components e.g. for

● Each view
● Complicated functionality
● Important variables, memory

Models for Views
● Describe a single

view of application
● Offer means to switch

to other views
● May contain simple

functionality

Models for Functionality
● Describe a single,

often linear process
● Useful for complex

action or
synchronization
sequences

● Usable in multiple
views

Models for Memory
● Have a state for each

possible value
● Retain their states

while other
components are
active

Example: Messaging
● Models for views: Main, Inbox, Create SMS,

Create MMS
● Models for functionality: Add Recipient, Sender,

Receiver
● Models for variables: Messages, Messages

Interface
● Other: Startup

Messaging on Single Phone

Handling Models

Model Library
● Collection of model components designed to

work together
● Contains information on how the components

are related to each other
● A number of components can be selected for

composition into test model

Synthesizing Models
● Test models can be synthesized from test cases
● Based on finding identical action sequences

and corresponding states
● Resulting model can generate original test

cases and their combinations
● Currently lacks sufficient tool support

Filtering
● Incomplete and/or bugged SUT cannot execute

all tests model can generate
● Test generation must avoid unexecutable

features
● Such features can be filtered out of the model

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

